Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 797
Filtrar
1.
J Plant Res ; 137(2): 203-213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281225

RESUMO

A newly found leaf arrangement to reduce self-shading was observed in a Japanese warm-temperate forest. For monoaxial trees that deploy leaves directly on a single stem, leaf arrangements involving progressive elongation of the petiole and progressive increase in deflection angle (the angle between stem and petiole) from the uppermost to the lowermost leaves act to reduce self-shading. However, the progressive reduction in petiole length and deflection angle from the uppermost to the lowermost leaves should also result in the reduction of self-shading. Nevertheless, the latter leaf arrangement has not been reported previously for any tree species. Four Araliaceae species, namely, Gamblea innovans, Chengiopanax sciadophylloides, Dendropanax trifidus and Fatsia japonica, which are typical monoaxial tree species in Japan, were studied. We examined the crown structure of saplings growing in the light-limited understorey in a Japanese warm-temperate forest. Two evergreen species, Dendropanax trifidus and F. japonica showed progressive petiole elongation and progressive increase in the deflection angle from the uppermost to the lowermost leaves. In contrast, saplings of deciduous species, G. innovans and C. sciadophylloides had a leaf arrangement involving progressive reduction in petiole length and deflection angle from the uppermost to the lowermost leaves. The leaf arrangement has diversified among members of the same family, but all four studied species develop a crown with little self-shading that is adapted for growth in the light-limited understorey. Although trees are likely to be under the same selective pressure to reduce self-shading, this study revealed that there is flexibility in its morphological realisation, which has been poorly appreciated previously.


Assuntos
Fotossíntese , Árvores , Árvores/anatomia & histologia , Japão , Florestas , Folhas de Planta/anatomia & histologia
2.
Nature ; 625(7996): 728-734, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200314

RESUMO

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Assuntos
Florestas , Árvores , Clima Tropical , Biodiversidade , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , África , Sudeste Asiático
3.
Evolution ; 78(3): 480-496, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38150399

RESUMO

Greater diversity in functional morphology should be associated with the evolution of greater ontogenetic diversity, an expectation difficult to test in most long-lived wild organisms. In the cells derived from the wood meristem (vascular cambium), plants provide extraordinary systems for reconstructing ontogenies in often long-lived organisms. The vascular cambium produces files of cells from the stem center to the periphery, with each cambial derivative "deciding" which of four cell types it differentiates into. Wood cell files remain in place, allowing tracing of the ontogenetic "decisions" taken throughout the life of a stem. We compared cell files from the Pedilanthus clade (genus Euphorbia), which span a range of growth forms from small trees and shrubs of tropical habitats to desert succulents. Using language theory, we represented wood cell types as "letters" and combinations of cell types in cell files as "words," allowing us to measure the diversity of decisions based on word frequency matrices. We also used information content metrics to compare levels of predictability in "decision-making." Our analyses identified a wider array of developmental decisions in woody trees as compared to succulent shrubs, illustrating ways that woody plants provide unparalleled systems for studying the evolution of ontogeny in long-lived, non-model species.


Assuntos
Plantas , Madeira , Câmbio/anatomia & histologia , Árvores/anatomia & histologia , Ecossistema
4.
Cutis ; 112(5): 250-252, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38091432

RESUMO

Dendrocnide moroides (also known as gympie-gympie, mulberrylike stinging tree, or stinger) is arguably the most brutal of stinging plants, even leading to death in dogs, horses, and humans in rare cases. They can be recognized as shrubs with heart-shaped, serrated, dark green leaves that are covered in what appears to be soft downy fur with red to dark purple raspberries growing on long stems. After contact, there is immediate piloerection and local swelling, which may disappear after 1 hour or last as long as 24 hours, but the subjective pain, pruritus, and burning can persist for months. One can only treat conservatively with symptom management, and the most successful method of removing plant hair is hair removal wax strips, which are considered an essential component of a first aid kit where D moroides is found.


Assuntos
Dor , Folhas de Planta , Árvores , Austrália , Árvores/efeitos adversos , Árvores/anatomia & histologia , Folhas de Planta/efeitos adversos , Folhas de Planta/anatomia & histologia , Manejo da Dor/métodos , Tratamento Conservador/métodos
5.
J Vis Exp ; (199)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37811928

RESUMO

An X-ray computed tomography (CT) toolchain is presented to obtain tree-ring width (TRW), maximum latewood density (MXD), other density parameters, and quantitative wood anatomy (QWA) data without the need for labor-intensive surface treatment or any physical sample preparation. The focus here is on increment cores and scanning procedures at resolutions ranging from 60 µm down to 4 µm. Three scales are defined at which wood should be looked at: (i) inter-ring scale, (ii) ring scale, i.e., tree-ring analysis and densitometry scale, as well as (iii) anatomical scale, the latter approaching the conventional thin-section quality. Custom-designed sample holders for each of these scales enable high-throughput scanning of multiple increment cores. A series of software routines were specifically developed to efficiently treat three-dimensional X-ray CT images of the tree cores for TRW and densitometry. This work briefly explains the basic principles of CT, which are needed for a proper understanding of the protocol. The protocol is presented for some known species that are commonly used in dendrochronology. The combination of rough density estimates, TRW and MXD data, as well as quantitative anatomy data, allows us to broaden and deepen current analyses for climate reconstructions or tree response, as well as further develop the field of dendroecology/climatology and archeology.


Assuntos
Árvores , Madeira , Árvores/anatomia & histologia , Clima , Tomografia Computadorizada por Raios X , Software
6.
New Phytol ; 240(4): 1390-1404, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710419

RESUMO

Covariation of plant functional traits, that is, phenotypic integration, might constrain their variability. This was observed for inter- and intraspecific variation, but there is no evidence of a relationship between phenotypic integration and the functional variation within single plants (within-individual trait variation; WTV), which could be key to understand the extent of WTV in contexts like plant-plant interactions. We studied the relationship between WTV and phenotypic integration in c. 500 trees of 21 species in planted forest patches varying in species richness in subtropical China. Using visible and near-infrared spectroscopy (Vis-NIRS), we measured nine leaf morphological and chemical traits. For each tree, we assessed metrics of single and multitrait variation to assess WTV, and we used plant trait network properties based on trait correlations to quantify phenotypic integration. Against expectations, strong phenotypic integration within a tree led to greater variation across leaves. Not only this was true for single traits, but also the dispersion in a tree's multitrait hypervolume was positively associated with tree's phenotypic integration. Surprisingly, we only detected weak influence of the surrounding tree-species diversity on these relationships. Our study suggests that integrated phenotypes allow the variability of leaf phenotypes within the organism and supports that phenotypic integration prevents maladaptive variation.


Assuntos
Florestas , Árvores , Árvores/anatomia & histologia , Folhas de Planta/anatomia & histologia , Plantas , Fenótipo
7.
Ann Bot ; 132(3): 401-412, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37665958

RESUMO

BACKGROUND AND AIMS: Whole-plant performance in water-stressed and disturbance-prone environments depends on a suitable supply of water from the roots to the leaves, storage of reserves during periods of shortage, and a morphological arrangement that guarantees the maintenance of the plants anchored to the soil. All these functions are performed by the secondary xylem of roots. Here, we investigate whether different growth forms of Fabaceae species from the seasonally dry Neotropical environment have distinct strategies for water transport, mechanical support and non-structural carbon and water storage in the root secondary xylem. METHODS: We evaluated cross-sections of root secondary xylem from species of trees, shrubs and subshrubs. We applied linear models to verify the variability in secondary xylem anatomical traits among growth forms. KEY RESULTS: Secondary xylem with larger vessels and lower vessel density was observed in tree species. Vessel wall thickness, vessel grouping index, potential hydraulic conductivity and cell fractions (vessels, fibres, rays and axial parenchyma) were not statistically different between growth forms, owing to the high interspecific variation within the groups studied. CONCLUSION: Our results showed that the variability in anatomical traits of the secondary xylem of the root is species specific. In summary, the cellular complexity of the secondary xylem ensures multiple functional strategies in species with distinct growth forms, a key trait for resource use in an environment with strong water seasonality.


Assuntos
Fabaceae , Xilema/anatomia & histologia , Árvores/anatomia & histologia , Folhas de Planta/anatomia & histologia , Água
8.
Nature ; 620(7972): 97-103, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532816

RESUMO

Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era1. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3, in contrast to simulation experiments at regional scales4. This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5. Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales.


Assuntos
Mudança Climática , Pinus , Temperatura , Árvores , Mudança Climática/história , Mudança Climática/estatística & dados numéricos , Aquecimento Global/história , Aquecimento Global/estatística & dados numéricos , Reprodutibilidade dos Testes , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , História Medieval , História do Século XXI , Modelos Climáticos , Incerteza , Pinus/anatomia & histologia , Pinus/crescimento & desenvolvimento , Internacionalidade
10.
Nature ; 615(7950): 80-86, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859581

RESUMO

The distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales1-14. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems15-18. We assessed more than 9.9 billion trees derived from more than 300,000 satellite images, covering semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and root carbon to every tree in the 0-1,000 mm year-1 rainfall zone by coupling field data19, machine learning20-22, satellite data and high-performance computing. Average carbon stocks of individual trees ranged from 0.54 Mg C ha-1 and 63 kg C tree-1 in the arid zone to 3.7 Mg C ha-1 and 98 kg tree-1 in the sub-humid zone. Overall, we estimated the total carbon for our study area to be 0.84 (±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation studies23 for our area found that the density and carbon stocks of scattered trees have been underestimated by three models and overestimated by 11 models, respectively. This benchmarking can help understand the carbon cycle and address concerns about land degradation24-29. We make available a linked database of wood mass, foliage mass, root mass and carbon stock of each tree for scientists, policymakers, dryland-restoration practitioners and farmers, who can use it to estimate farmland tree carbon stocks from tablets or laptops.


Assuntos
Carbono , Clima Desértico , Ecossistema , Árvores , Carbono/análise , Carbono/metabolismo , Árvores/anatomia & histologia , Árvores/química , Árvores/metabolismo , Dessecação , Imagens de Satélites , África Subsaariana , Aprendizado de Máquina , Madeira/análise , Raízes de Plantas , Agricultura , Recuperação e Remediação Ambiental , Bases de Dados Factuais , Biomassa , Computadores
11.
Plant Cell Environ ; 46(6): 1849-1859, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36793149

RESUMO

Cavitation resistance has often been viewed as a relatively static trait, especially for stems of forest trees. Meanwhile, other hydraulic traits, such as turgor loss point (Ψtlp ) and xylem anatomy, change during the season. In this study, we hypothesized that cavitation resistance is also dynamic, changing in coordination with Ψtlp . We began with a comparison of optical vulnerability (OV), microcomputed tomography (µCT) and cavitron methods. All three methods significantly differed in the slope of the curve,Ψ12 and Ψ88 , but not in Ψ50 (xylem pressures that cause 12%, 88%, 50% cavitation, respectively). Thus, we followed the seasonal dynamics (across 2 years) of Ψ50 in Pinus halepensis under Mediterranean climate using the OV method. We found that Ψ50 is a plastic trait with a reduction of approximately 1 MPa from the end of the wet season to the end of the dry season, in coordination with the dynamics of the midday xylem water potential (Ψmidday ) and the Ψtlp . The observed plasticity enabled the trees to maintain a stable positive hydraulic safety margin and avoid cavitation during the long dry season. Seasonal plasticity is vital for understanding the actual risk of cavitation to plants and for modeling species' ability to tolerate harsh environments.


Assuntos
Pinus , Estações do Ano , Microtomografia por Raio-X , Clima , Árvores/anatomia & histologia , Xilema/anatomia & histologia , Água , Secas
12.
Tree Physiol ; 43(3): 366-378, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36263989

RESUMO

Through repeated cycles of selection and recombination, tree breeding programs deliver genetically improved varieties for a range of target characteristics such as biomass production, stem form, resistance to biotic stresses, wood properties, etc. However, in the context of increased drought and heat waves, it is not yet known whether growth performance will impede drought resistance. To address this question, we compared the hydraulic properties, such as hydraulic efficiency and hydraulic safety, in four varieties over successive varieties of genetically improved maritime pines (i.e., Pinus pinaster Aït.) for growth and stem form. We measured 22 functional traits related to hydraulic efficiency, hydraulic safety, xylem anatomy and wood density. We found that improved varieties presented higher hydraulic conductivity with larger tracheid lumen size and tracheid lumen fraction, and smaller wall thickness reinforcement and tracheid density, but not at the cost of reduced embolism resistance. The reported absence of trade-off between hydraulic conductivity and embolism resistance is a strong asset to improve biomass productivity, through increased hydraulic efficiency, without impacting drought resistance, and should enable new maritime pine varieties to cope with a drier climate. Our study is one of the first to reveal the hydraulic mechanisms over successive varieties of genetic improvement for tree growth. It provides guidelines for sustainable forest management through breeding for other forest tree species.


Assuntos
Pinus , Pinus/genética , Água , Melhoramento Vegetal , Xilema/anatomia & histologia , Madeira/genética , Madeira/anatomia & histologia , Árvores/anatomia & histologia , Secas
13.
New Phytol ; 237(5): 1684-1695, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427292

RESUMO

If trees minimize self-shading, new foliage in shaded parts of the crown should remain minimal. However, many species have abundant foliage on short shoots inside their crown. In this paper, we test the hypothesis that short shoots allow trees to densify their foliage in self-shaded parts of the crown thanks to reduced costs. Using 30 woody species in Mediterranean and tropical biomes, we estimated the contribution of short shoots to total plant foliage, calculated their costs relative to long shoots including wood cost and used 3D plant simulations calibrated with field measurements to quantify their light interception, self-shading and yield. In species with short shoots, leaves on short shoots account for the majority of leaf area. The reduced cost of short stems enables the production of leaf area with 36% less biomass. Simulations show that although short shoots are more self-shaded, they benefit the plant because they cost less. Lastly, the morphological properties of short shoots have major implications for whole plant architecture. Taken together, our results question the validity of only assessing leaf costs to understand leaf economics and call for more integrated observations at the crown scale to understand light capture strategies in woody plants.


Assuntos
Ecossistema , Madeira , Brotos de Planta/anatomia & histologia , Análise Custo-Benefício , Biomassa , Árvores/anatomia & histologia , Folhas de Planta/anatomia & histologia
14.
Sci Rep ; 12(1): 21475, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509884

RESUMO

The wind load a tree withstood is mainly applied to its crown, whose morphology and structure directly affect the degree of wind load given a certain wind condition. Though the features of tree crown are relatively easy to measure, however, among them which is/are the determining factor and how they contribute to wind load remain unknown. In order to figure out how crown features of different tree species influence the wind load, the wind tunnel experiment was performed for 7 most used urban greening tree species, and laser scanning was used to measure the accurate crown features. The results derived by multiple linear model showed (1) Ficus concinna, Dracontomelon duperreanum, Ormosia pinnata and Bischofia javanica are recommended in urban greening for suffering the smaller wind load under the same conditions, whereas Schefflera macrostachya, Acacia confusa and Khaya senegalensis are inadequate towards the view of crown features; (2) crown features like crown horizontal ratio, windward side projection and porosity ratio are important in estimating wind load. Our study demonstrated that evaluating the wind load via crown features is feasible, and provided valuable suggestion for selecting idealized decorative trees in urban environment with a smaller wind load due to the crown features.


Assuntos
Luz , Árvores , Árvores/anatomia & histologia , Lasers
15.
Nature ; 608(7923): 552-557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948636

RESUMO

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Assuntos
Aquecimento Global , Estações do Ano , Temperatura , Árvores , Aclimatação , Biomassa , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Modelos Climáticos , Florestas , Aquecimento Global/estatística & dados numéricos , América do Norte , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Fatores de Tempo , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismo
16.
Sci Rep ; 11(1): 23807, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893677

RESUMO

Leaf functional traits support plant survival and growth in different stress and disturbed conditions and respond according to leaf habit. The present study examined 13 leaf traits (3 morphological, 3 chemical, 5 physiological, and 2 stoichiometry) of nine dominant forest tree species (3 coniferous, 3 deciduous broad-leaved, 3 evergreen broad-leafed) to understand the varied response of leaf habits. The hypothesis was to test if functional traits of the conifers, deciduous and evergreen differ significantly in the temperate forest and to determine the applicability of leaf economic theory i.e., conservative vs. acquisitive resource investment, in the temperate Himalayan region. The attributes of the functional traits i.e., leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf water content (LWC), stomatal conductance (Gs), and transpiration (E) followed the order deciduous > evergreen > coniferous. Leaf carbon and leaf C/N ratio showed the opposite pattern, coniferous > evergreen > deciduous. Chlorophyll (Chl) and photosynthetic rate (A) were highest for evergreen species, followed by deciduous and coniferous species. Also, structural equation modelling determined that morphological factors were negatively related to physiological and positively with chemical factors. Nevertheless, physiological and chemical factors were positively related to each other. The physiological traits were mainly regulated by stomatal conductance (Gs) however the morphological traits were determined by LDMC. Stoichiometry traits, such as leaf C/N, were found to be positively related to leaf carbon, and leaf N/P was found to be positively related to leaf nitrogen. The result of the leaf functional traits relationship would lead to precise prediction for the functionality of the temperate forest ecosystem at the regional scale.


Assuntos
Ecossistema , Meio Ambiente , Florestas , Folhas de Planta/anatomia & histologia , Árvores/anatomia & histologia , Árvores/fisiologia , Biodiversidade , Clima , Modelos Teóricos , Compostos Fitoquímicos/análise , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais , Característica Quantitativa Herdável
17.
Sci Rep ; 11(1): 15344, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321533

RESUMO

Pterogyne nitens is commonly known in northeastern Brazil as a lesser-known fast-growing species in the Caatinga biome, which is a difficult place for tree development due to the low natural fertility soils and low availability of water. Due to the importance of expanding information about the anatomical wood properties of Caatinga native species, the aim of this work was to characterize the anatomical elements, to macroscopically describe the wood and make inferences about its possible end-uses. Maceration was performed which enabled measuring fiber dimensions, pore frequency and the following technological indexes: cell wall fraction, slenderness ratio, Runkel index and flexibility coefficient. Histological sections enabled describing the arrangements of the cellular elements in different observation sections and to determine the pore diameter. P. nitens wood has anatomical arrangements characterized by confluent axial parenchyma, being diffuse-porous with the presence of tylosis and heterogeneous/stratified rays (biseriate). The fibers were classified as very short (length 0.81 mm), not flexible and Runkel index 0.82. The pores were few in number with a frequency of 32.9 pores/mm2, distributed in a diffuse format and many were obstructed by tylosis. Based on the anatomical results and considering other technological studies, P. nitens wood is most suitable for charcoal production.


Assuntos
Fabaceae/anatomia & histologia , Árvores/anatomia & histologia , Madeira/análise , Brasil , Carvão Vegetal/química , Ecossistema , Fabaceae/química , Fabaceae/citologia , Humanos , Células Vegetais/ultraestrutura , Árvores/química , Árvores/citologia , Madeira/citologia
18.
Plant Cell Environ ; 44(11): 3494-3508, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33822389

RESUMO

Determining the fate of CO2 respired in woody tissues is necessary to understand plant respiratory physiology and to evaluate CO2 recycling mechanisms. An aqueous 13 C-enriched CO2 solution was infused into the stem of 3-4 m tall trees to estimate efflux and assimilation of xylem-transported CO2 via cavity ring-down laser spectroscopy and isotope ratio mass spectrometry, respectively. Different tree locations (lower stem, upper stem and leafy shoots) and tissues (xylem, bark and leaves) were monitored in species with tracheid, diffuse- and ring-porous wood anatomy (cedar, maple and oak, respectively). Radial xylem CO2 diffusivity and xylem [CO2 ] were lower in cedar relative to maple and oak trees, thereby limiting label diffusion. Part of the labeled 13 CO2 was assimilated in cedar (8.7%) and oak (20.6%) trees, mostly in xylem and bark tissues of the stem, while limited solution uptake in maple trees hindered the detection of label assimilation. Little label reached foliar tissues, suggesting substantial label loss along the stem-branch transition following reductions in the radial diffusive pathway. Differences in respiration rates and radial xylem CO2 diffusivity (lower in conifer relative to angiosperm species) might reconcile discrepancies in efflux and assimilation of xylem-transported CO2 so far observed between taxonomic clades.


Assuntos
Dióxido de Carbono/metabolismo , Árvores/metabolismo , Madeira/anatomia & histologia , Xilema/metabolismo , Acer/anatomia & histologia , Acer/metabolismo , Transporte Biológico , Quercus/anatomia & histologia , Quercus/metabolismo , Especificidade da Espécie , Thuja/anatomia & histologia , Thuja/metabolismo , Árvores/anatomia & histologia
19.
Isotopes Environ Health Stud ; 57(3): 301-315, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33769149

RESUMO

Emissions from traffic over the past few decades have become a significant source of air pollution. Among the pollutants emitted are nitrogen oxides (NOx), exposure to which can be detrimental to public health. Recent studies have shown that nitrogen (N) stable isotope ratios in tree-rings and foliage express a fingerprint of their major N source, making them appropriate for bio-monitoring purposes. In this study, we have applied this proxy to Aleppo pines (Pinus halepensis) at three distances from one of the busiest roads in Malta, a country known to suffer from intense traffic pollution. Our results showed that N and organic carbon (C) stable isotope ratios in tree-rings do not vary over the period 1980-2018 at any of the investigated sites; however, statistically significant spatial trends were apparent in both tree-rings and foliage. The roadside and transitional sites exhibited more positive δ15N and more negative δ13C values compared to those at a rural control site. This is likely due to the incorporation of 15N-enriched NOx and 13C-depleted CO2 from traffic pollution. Sampled top-soil also exhibited the δ15N trend. Our results constitute the first known application of dendrogeochemistry to atmospheric pollution monitoring in Malta.


Assuntos
Isótopos de Nitrogênio/análise , Óxidos de Nitrogênio/análise , Folhas de Planta/química , Poluição Relacionada com o Tráfego/análise , Árvores/anatomia & histologia , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Isótopos de Carbono/análise , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Malta , Solo/química , Fatores de Tempo
20.
Nat Plants ; 7(1): 42-49, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33398156

RESUMO

Allometric scaling laws critically examine structure-function relationships. In estimating the forest biomass carbon and its response under climate change, the issue of scaling has resulted in difficulties when modelling the biomass for different-sized trees, especially large ones, and has not yet been solved in either theory or practice. Here, we propose the concept of a dynamic allometric scaling relationship between stem biomass and above-ground biomass The allometric curve approaches an asymptote with an increase in tree size. An asymptotic allometric equation is presented that has a better fit to the data than the simple power-law allometric equation. The non-constant exponent is determined by the change in the biomass ratio for different organs and is governed by the dynamic allometric coefficient. This study presents a methodological framework to theoretically characterize allometric relationships and provides new insights in understanding the general scaling pattern and carbon sequestration capacity of large trees across global forests.


Assuntos
Árvores/anatomia & histologia , Biomassa , Sequestro de Carbono , Florestas , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...